Stress and head and neck tumors: the importance of determining heart rate variability
Authors:
H. Hajdúová 1; M. Tedla 1; B. Mravec 2,3
Authors‘ workplace:
Klinika otorinolaryngológie a chirurgie hlavy a krku LF UK a UN Bratislava
1; Fyziologický ústav, Lekárska fakulta UK v Bratislave
2; Ústav experimentálnej endokrinológie, Biomedicínske centrum SAV, Bratislava
3
Published in:
Otorinolaryngol Foniatr, 74, 2025, No. 1, pp. 43-51.
Category:
Original Article
doi:
https://doi.org/10.48095/ccorl202543
Overview
Knowledge, mainly gained in the last two decades, has provided a better understanding of the mechanisms and pathways through which the nervous system, and thus stress, influences processes related to cancer initiation and progression. Neurobiological research on cancer has not only increased the knowledge of the aetiopathogenesis of the tumour process, but also has laid the foundation for the introduction of new therapeutic methods in oncology based on the modulation of the transmission of signals between the nervous system andtumour tissue. It also has been found that monitoring the activity of components of the autonomic nervous system can be used not only to determine the degree of stress in a given patient, but also to assess the prognosis of his or her oncological disease. One of the effective methods to monitor the flexibility and balance of the autonomic nervous system components and indirectly the level of stress in cancer patients is the determination of heart rate variability (HRV). The validity of the use of this method in oncology is indicated by the findings that patients with higher HRV values show longer survival compared to patients with lower HRV values. The aim of this text is to review the current knowledge regarding the impact of stress on head and neck cancer and to outline the possibilities of using HRV determination as a prognostic marker in these patients. The potential use of methods aimed at increasing HRV and their potential use in the management of patients with head and neck tumours are also discussed.
Keywords:
Norepinephrine – Sympathetic nervous system – cortisol – epinephrine – adrenal medulla – hypothalamo-pituitary-adrenal axis
Sources
1. Barsouk A, Aluru JS, Rawla P et al. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med Sci (Basel) 2023; 11 (2). Doi: 10.3390/medsci11020042.
2. Gormley M, Creaney G, Schache A et al. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J 2022; 233 (9): 780–786. Doi: 10.1038/s41415-022-5166-x.
3. Howren MB, Christensen AJ, Karnell LH et al. Psychological factors associated with head and neck cancer treatment and survivorship: evidence and opportunities for behavioral medicine. J Consult Clin Psychol 2013; 81 (2): 299–317. Doi: 10.1037/a0029940.
4. Iftikhar A, Islam M, Shepherd S et al. Cancer and Stress: Does It Make a Difference to the Patient When These Two Challenges Collide? Cancers (Basel) 2021; 13 (2). Doi: 10.3390/cancers 13020163.
5. Mravec B. Neurobiology of cancer: Definition, historical overview, and clinical implications. Cancer Med 2022; 11 (4): 903–921. Doi: 10.1002/cam4.4488.
6. Eckerling A, Ricon-Becker I, Sorski L et al. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer 2021; 21 (12): 767–785. Doi: 10.1038/s41568-021-00395-5.
7. Mravec B, Horvathova L, Hunakova L. Neurobiology of cancer: the role of b-adrenergic receptor signaling in various tumor environments. Int J Mol Sci 2020; 21: 7958. Doi: 10.3390/ijms21217958.
8. McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 2004; 1032: 1–7. Doi: 10.1196/annals.1314.001.
9. Kim HG, Cheon EJ, Bai DS et al. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig 2018; 15 (3): 235–245. Doi: 10.30773/pi.2017.08.17.
10. Chu B, Marwaha K, Sanvictores T et al. Physiology, Stress Reaction. Treasure Island (FL): StatPearls 2024.
11. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009; 10 (6): 397–409. Doi: 10.1038/nrn2647.
12. Mifsud KR, Reul J. Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain. Stress 2018; 21 (5): 389–402. Doi: 10.1080/10253890.2018.1456526.
13. Flint MS, Baum A, Chambers WH et al. Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology 2007; 32 (5): 470–479. Doi: 10.1016/j.psyneuen.2007.02.013.
14. Wrobel LJ, Le Gal FA. Inhibition of human melanoma growth by a non-cardioselective beta-blocker. J Invest Dermatol 2015; 135 (2): 525–531. Doi: 10.1038/jid.2014.373.
15. Armaiz-Pena GN, Allen JK, Cruz A et al. Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nat Commun 2013; 4: 1403. Doi: 10.1038/ncomms2413.
16. Shi M, Liu D, Duan H et al. The beta2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat 2011; 125 (2): 351–362. Doi: 10.1007/s10549-010-0822-2.
17. Huan HB, Wen XD, Chen XJ et al. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells. Brain Behav Immun 2017; 59: 118–134. Doi: 10.1016/j.bbi.2016.08.016.
18. Ben-Eliyahu S, Shakhar G, Page GG et al. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. Neuroimmunomodulation 2000; 8 (3): 154–164. Doi: nim08154 [pii].
19. Schuller HM, Cole B. Regulation of cell proliferation by beta-adrenergic receptors in a human lung adenocarcinoma cell line. Carcinogenesis 1989; 10 (9): 1753–1755. Doi: 10.1093/carcin/10.9.1753.
20. Huang XY, Wang HC, Yuan Z et al. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology 2012; 59 (115): 889-893. Doi: 10.5754/hge11476.
21. Lackovicova L, Banovska L, Bundzikova J et al. Chemical sympathectomy suppresses fibrosarcoma development and improves survival of tumor-bearing rats. Neoplasma 2011; 58 (5): 424–429. Doi: 10.4149/neo_2011_05_424.
22. Horvathova L, Padova A, Tillinger A et al. Sympathectomy reduces tumor weight and affects expression of tumor-related genes in melanoma tissue in the mouse. Stress 2016: 1–19. Doi:
23. Zhi X, Li B, Li Z et al. Adrenergic modulation of AMPKdependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer. Int J Oncol 2019; 54 (5): 1625–1638. Doi: 10.3892/ijo.2019.4753.
24. Yang EV, Kim SJ, Donovan EL et al. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 2009; 23 (2): 267–275. Doi: 10.1016/j.bbi.2008.10.005.
25. Park SY, Kang JH, Jeong KJ et al. Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. Int J Cancer 2011; 128 (10): 2306–2316. Doi: 10.1002/ijc. 25589.
26. Le CP, Nowell CJ, Kim-Fuchs C et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun 2016; 7: 10634. Doi: 10.1038/ncomms10634.
27. Yang EV, Sood AK, Chen M et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP) -2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 2006; 66 (21): 10357–10364. Doi: 10.1158/0008-5472.CAN-06-2496.
28. Sood AK, Bhatty R, Kamat AA et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 2006; 12 (2): 369–375. Doi: 10.1158/1078-0432.CCR-05-1698.
29. Cole SW, Nagaraja AS, Lutgendorf SK et al. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 2015; 15 (9): 563–572. Doi: 10.1038/nrc3978.
30. Sloan EK, Priceman SJ, Cox BF et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 2010; 70 (18): 7042–7052. Doi: 10.1158/0008-5472.CAN-10-0522.
31. Palm D, Lang K, Niggemann B et al. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer 2006; 118 (11): 2744–2749. Doi: 10.1002/ijc.21723.
32. Tang J, Li Z, Lu L et al. beta-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol 2013; 23 (6 Pt B): 533–542. Doi: 10.1016/j.semcancer.2013.08.009.
33. De Giorgi V, Grazzini M, Benemei S et al. Propranolol for Off-label Treatment of Patients With Melanoma: Results From a Cohort Study. JAMA Oncol 2018; 4 (2): e172908. Doi: 10.1001/jamaoncol.2017.2908.
34. Powe DG, Voss MJ, Zanker KS et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 2010; 1 (7): 628–638. Doi: 10.18632/oncotarget. 101009.
35. Lemeshow S, Sorensen HT, Phillips G et al. Beta-blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 2011; 20 (10): 2273–2279. Doi: 10.1158/1055-9965.EPI-11-0249.
36. Spera G, Fresco R, Fung H et al. Beta blockers and improved progression-free survival in patients with advanced HER2 negative breast cancer: a retrospective analysis of the ROSE/TRIO-012 study. Ann Oncol 2017; 28 (8): 1836–1841. Doi: 10.1093/annonc/mdx264.
37. Udumyan R, Montgomery S, Fang F et al. Beta-Blocker Drug Use and Survival among Patients with Pancreatic Adenocarcinoma. Cancer Res 2017; 77 (13): 3700–3707. Doi: 10.1158/0008-5472.CAN-17-0108.
38. Shang ZJ, Liu K, Liang DF. Expression of beta2-adrenergic receptor in oral squamous cell carcinoma. J Oral Pathol Med 2009; 38 (4): 371–376. Doi: 10.1111/j.1600-0714.2008.00691.x.
39. Xie H, Li C, He Y et al. Chronic stress promotes oral cancer growth and angiogenesis with increased circulating catecholamine and glucocorticoid levels in a mouse model. Oral Oncol 2015; 51 (11): 991–997. Doi: 10.1016/j.oraloncology.2015.08.007.
40. Xie H, Li B, Li L et al. Association of increased circulating catecholamine and glucocorticoid levels with risk of psychological problems in oral neoplasm patients. PLoS One 2014; 9 (7): e99179. Doi: 10.1371/journal.pone.0099179.
41. Bastos DB, Sarafim-Silva BAM, Sundefeld M et al. Circulating catecholamines are associated with biobehavioral factors and anxiety symptoms in head and neck cancer patients. PLoS One 2018; 13 (8): e0202515. Doi: 10.1371/journal.pone.0202515.
42. Kwon SY, Chun KJ, Kil HK et al. beta2-adrenergic receptor expression and the effects of norepinephrine and propranolol on various head and neck cancer subtypes. Oncol Lett 2021; 22 (5): 804. Doi: 10.3892/ol.2021.13065.
43. Amit M, Takahashi H, Dragomir MP et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020; 578 (7795): 449–454. Doi: 10.1038/s41586-020-1996-3.
44. Lopes-Santos G, Bernabe DG, Miyahara GI et al. Beta-adrenergic pathway activation enhances aggressiveness and inhibits stemness in head and neck cancer. Transl Oncol 2021; 14 (8): 101117. Doi: 10.1016/j.tranon.2021.101117.
45. Zenga J, Awan MJ, Frei A et al. Chronic stress promotes an immunologic inflammatory state and head and neck cancer growth in a humanized murine model. Head Neck 2022; 44 (6): 1324–1334. Doi: 10.1002/hed.27028.
46. Zhang C, Liao X, Ma Z et al. Overexpression of beta-Adrenergic Receptors and the Suppressive Effect of beta (2) -Adrenergic Receptor Blockade in Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2020; 78 (10): 1871 e1871–e1823. Doi: 10.1016/j.joms.2020.05.031.
47. DeCaro JA. Beyond catecholamines: Measuring autonomic responses to psychosocial context. Am J Hum Biol 2016; 28 (3): 309–317. Doi: 10.1002/ajhb.22815.
48. Marques AH, Silverman MN, Sternberg EM. Evaluation of stress systems by applying noninvasive methodologies: measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation 2010; 17 (3): 205–208. Doi: 10.1159/000258725.
49. Soler NG. Laboratory Evaluation of the Autonomic System. In: Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edn. Walker HK, Hall WD, Hurst JW (eds). Boston 1990.
50. Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health 2017; 5: 258. Doi: 10.3389/fpubh. 2017.00258.
51. Ernst G. Heart Rate Variability. London: Springer 2013.
52. Sloan RP, Shapiro PA, Bagiella E et al. Effect of mental stress throughout the day on cardiac autonomic control. Biol Psychol 1994; 37 (2): 89–99. Doi: 10.1016/0301-0511 (94) 90024-8.
53. Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol 2014; 5: 756. Doi: 10.3389/fpsyg. 2014.00756.
54. Zhou X, Ma Z, Zhang L et al. Heart rate variability in the prediction of survival in patients with cancer: A systematic review and meta-analysis. J Psychosom Res 2016; 89: 20–25. Doi: 10.1016/j.jpsychores.2016.08.004.
55. Guo Y, Koshy S, Hui D et al. Prognostic Value of Heart Rate Variability in Patients With Cancer. J Clin Neurophysiol 2015; 32 (6): 516–520. Doi: 10.1097/WNP.0000000000000210.
56. Bijoor SN, Subbalakshmi NK, Banerjee S. Influence of cancer and its severity on vagal nerve activity assessed by time domain measures of heart rate variability. RJPBCS 2016; 7 (3): 1215–1220.
57. Gitler A, Vanacker L, De Couck M et al. Neuromodulation Applied to Diseases: The Case of HRV Biofeedback. J Clin Med 2022; 11 (19). Doi: 10.3390/jcm11195927.
58. Mravec B, Tibensky M, Horvathova L. Stress and cancer. Part I: Mechanisms mediating the effect of stressors on cancer. J Neuroimmunol 2020; 346: 577311. Doi: 10.1016/ j.jneuroim.2020.577311.
59. Mravec B, Tibensky M, Horvathova L. Stress and cancer. Part II: Therapeutic implications for oncology. J Neuroimmunol 2020; 346: 577312. Doi: 10.1016/j.jneuroim.2020.577312.
60. Turcu A-M, Ilie AC, Ștefăniu R et al. The impact of heart rate variability monitoring on preventing severe cardiovascular events. Diagnostics 2023; 13 (14): 2382. Doi: 10.3390/ diagnostics13142382.
61. Petersen KK, Andersen HH, Tsukamoto M et al. The effects of propranolol on heart rate variability and quantitative, mechanistic, pain profiling: a randomized placebo-controlled crossover study. Scand J Pain 2018; 18 (3): 479–489. Doi: 10.1515/sjpain-2018-0054.
62. Mravec B. Neurobiology of cancer: role of the nervous system in cancer etiopathogenesis, treatment, and prevention. Berlin: Springer 2024. Doi: 10.1007/978-3-031-68590-3.
63. Zhang D, Ma Q, Shen S et al. Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist‘s anticancer effect in pancreatic cancer cell. Pancreas 2009; 38 (1): 94–100. Doi: 10.1097/MPA.0b013e318184f50c.
64. Liao X, Che X, Zhao W et al. The beta-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor kappaB signaling. Oncol Rep 2010; 24 (6): 1669–1676. Doi: 10.3892/or_00001032.
Labels
Audiology Paediatric ENT ENT (Otorhinolaryngology)Article was published in
Otorhinolaryngology and Phoniatrics

Most read in this issue
- Acute mastoiditis in children – a retrospective analysis of incidence, etiology, and treatment approaches
- Czech version of the Tinnitus Handicap Inventory
- Focal infection in otorhinolaryngology – non-uniform diagnostic procedure
- An overview of surgical treatment of laryngeal cancer at the Department of ENT and Head and Neck Surgery of the Medical Faculty and UN Bratislava