#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Microenvironment of squamous cell carcinoma of the head and neck as an analogy of a healing wound


Authors: V. Bandúrová 1,2 ;  K. Smetana 2 ;  J. Plzák 1,2 ;  B. Dvořánková 2
Authors‘ workplace: Klinika otorinolaryngologie a chirurgie hlavy a krku 1. LF UK a FN v Motole, Praha 1;  Anatomický ústav 1. LF UK, Praha 2
Published in: Otorinolaryngol Foniatr, 71, 2022, No. 1, pp. 18-23.
Category: Review Article
doi: https://doi.org/10.48095/ccorl202218

Overview

Numerous interactions occur among fibroblasts, keratinocytes and immune cells during wound healing. The release of cytokines supports formation of granular tissue which then fills the wound. A chronic wound appears when this complex process is disrupted. We can see this problem in patients with diabetes. Granular tissue is very similar to the stroma of solid tumors. This work is focused on parallels between a healing wound and tumor. It aims to clearly describe the regulation of both processes. New knowledge in this field can contribute to revealing new therapeutic possibilities in chronic wounds and solid tumors.

Keywords:

squamous cell carcinoma – Head and neck tumors – healing – tumor microenvironment


Sources

1. Martin P. Wound healing--aiming for perfect skin regeneration. Science 1997; 276 (5309): 75–81. Doi: 10.1126/science.276.5309.75.

2. Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology (Williston Park) 2002; 16 (2): 217–226, 229; discussion 230–212.

3. Maxwell JH, Grandis JR, Ferris RL. HPV-associated head and neck cancer: Unique features of epidemiology and clinical management. Annu Rev Med 2016; 67: 91–101. Doi: 10.1146/annurev-med-051914-021907.

4. Lyford-Pike S, Peng S, Young GD et al. Evidence for a role of the PD-1: PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 2013; 73 (6): 1733–1741. Doi: 10.1158/0008-5472.CAN-12-2384.

5. Kim YH, Roh JL, Choi SH et al. Prediction of pharyngocutaneous fistula and survival after salvage laryngectomy for laryngohypopharyngeal carcinoma. Head Neck 2019; 41 (9): 3002– –3008. Doi: 10.1002/hed.25786.

6. Marur S, Forastiere AA. Head and neck squamous cell carcinoma: Update on epidemiology, dia­gnosis, and treatment. Mayo Clin Proc 2016; 91 (3): 386–396. Doi: 10.1016/j.mayocp.2015.12.017.

7. Graboyes EM, Kompelli AR, Neskey DM et al. Association of treatment delays with survival for patients with head and neck cancer: A systematic review. JAMA Otolaryngol Head Neck Surg 2019; 145 (2): 166–177. Doi: 10.1001/ jamaoto.2018.2716.

8. Chiesa-Estomba CM, Calvo-Henriquez C, Siga Diom E et al. Head and neck surgical antibio­tic prophylaxis in resource-constrained settings. Curr Opin Otolaryngol Head Neck Surg 2020; 28 (3): 188–193. Doi: 10.1097/MOO.0000 000000000626.

9. Clark JA, Leung KS, Cheng JC et al. The hypertrophic scar and microcirculation properties. Burns 1996; 22 (6): 447–450. Doi: 10.1016/0305-4179 (95) 00166-2.

10. Gabbiani G, Ryan GB, Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27 (5): 549–550. Doi: 10.1007/BF02147594.

11. Dvorankova B, Szabo P, Lacina L et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs 2011; 194 (6): 469–480. Doi: 10.1159/000324864.

12. Springer BA, Pantoliano MW, Barbera FA et al. Identification and concerted function of two receptor binding surfaces on basic fibroblast growth factor required for mitogenesis. J Biol Chem 1994; 269 (43): 26879–26884.

13. Strnadova K, Sandera V, Dvorankova B et al. Skin aging: the dermal perspective. Clin Dermatol 2019; 37 (4): 326–335. Doi: 10.1016/ j.clindermatol.2019.04.005.

14. Prasad A, Clark RA. Fibronectin interaction with growth factors in the context of general ways extracellular matrix molecules regulate growth factor signaling. G Ital Dermatol Venereol 2018; 153 (3): 3612374. Doi: 10.23736/S0392-0488.18.05952-7.

15. Glim JE, van Egmond M, Niessen FB et al. Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen 2013; 21 (5): 648–660. Doi: 10.1111/wrr.12 072.

16. Schwarz S, Gogele C, Ondruschka B et al. Migrating myofibroblastic iliotibial band-derived fibroblasts represent a promising cell source for ligament reconstruction. Int J Mol Sci 2019; 20 (8). Doi: 10.3390/ijms20081972.

17. Molzer C, Shankar SP, Masalski V et al. TGF-beta1-activated type 2 dendritic cells promote wound healing and induce fibroblasts to express tenascin c following corneal full-thickness hydrogel transplantation. J Tissue Eng Regen Med 2019; 13 (9): 1507–1517. Doi: 10.1002/term.2853.

18. Olczyk P, Mencner L, Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing. Biomed Res Int 2014; 2014: 747584. Doi: 10.1155/2014/747584.

19. Schnapp LM, Hatch N, Ramos DM et al. The human integrin alpha 8 beta 1 functions as a receptor for tenascin, fibronectin, and vitronectin. J Biol Chem 1995; 270 (39): 23196-23202. Doi: 10.1074/jbc.270.39.23196.

20. Zivicova V, Lacina L, Mateu R et al. Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: Developmental implications on reconstructive surgery. Int J Mol Med 2017; 40 (5): 1323–1334. Doi: 10.3892/ijmm.2017.3128.

21. Romio L, Fry AM, Winyard PJ et al. OFD1 is a centrosomal/basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis. J Am Soc Nephrol 2004; 15 (10): 2556-2568. Doi: 10.1097/01.ASN.0000140220.46477.5C.

22. Liechty KW, Kim HB, Adzick NS et al. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg 2000; 35 (6): 866–872; discussion 872–863. Doi: 10.1053/jpsu.2000.6868.

23. Kieran I, Knock A, Bush J et al. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen 2013; 21 (3): 4282436. Doi: 10.1111/wrr.12043.

24. De Felice B, Wilson RR, Nacca M et al. Molecular characterization and expression of p63 isoforms in human keloids. Mol Genet Genomics 2004; 272 (1): 28–34. Doi: 10.1007/s00438-004-1034-4.

25. Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm 2011; 8 (5): 1471–1479. Doi: 10.1021/mp2001457.

26. Lee SY, Borovicka JH, Holbrook JS et al. A short educational intervention measurably benefits keloid-prone individuals‘ knowledge of prevention and treatment. J Drugs Dermatol 2013; 12 (4): 397–402.

27. Sidle DM, Kim H. Keloids: prevention and management. Facial Plast Surg Clin North Am 2011; 19 (3): 505–515. Doi: 10.1016/j.fsc.2011.06.005.

28. Borsky J, Tvrdek M, Kozak J et al. Our first experience with primary lip repair in newborns with cleft lip and palate. Acta Chir Plast 2007; 49 (4): 83–87.

29. Krejci E, Kodet O, Szabo P et al. In vitro differences of neonatal and later postnatal keratinocytes and dermal fibroblasts. Physiol Res 2015; 64 (4): 561–569. Doi: 10.33549/physiolres.932893.

30. Zheng Z, Kang HY, Lee S et al. Up-regulation of fibroblast growth factor (FGF) 9 expression and FGF-WNT/beta-catenin signaling in laser--induced wound healing. Wound Repair Regen 2014; 22 (5): 660–665. Doi: 10.1111/wrr.12212.

31. Mateu R, Zivicova V, Krejci ED et al. Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro. Int J Mol Med 2016; 38 (4): 1063–1074. Doi: 10.3892/ijmm.2016.2706.

32. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315 (26): 1650–1659. Doi: 10.1056/NEJM19861 2253152606.

33. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015; 173 (2): 370–378. Doi: 10.1111/bjd.13954.

34. Gal P, Varinska L, Faber L et al. How signaling molecules regulate tumor microenvironment: Parallels to wound repair. Molecules 2017; 22 (11). Doi: 10.3390/molecules22111818.

35. Kolar M, Szabo P, Dvorankova B et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol Cell 2012; 104 (12): 738–751. Doi: 10.1111/boc.201200018.

36. Campbell NE, Kellenberger L, Greenaway J et al. Extracellular matrix proteins and tumor angiogenesis. J Oncol 2010; 2010: 586905. Doi: 10.1155/2010/586905.

37. Lacina L, Plzak J, Kodet O et al. Cancer microenvironment: What can we learn from the stem cell niche. Int J Mol Sci 2015; 16 (10): 24094–24110. Doi: 10.3390/ijms161024094.

38. Kodet O, Dvorankova B, Bendlova B et al. Microenvironment-driven resistance to BRaf inhibition in a melanoma patient is accompanied by broad changes of gene methylation and expression in distal fibroblasts. Int J Mol Med 2018; 41 (5): 2687–2703. Doi: 10.3892/ijmm.2018.3448.

39. Novák Š, Bandúrová V, Mifková A et al. Nádorové mikroprostředí. Otorinolaryngol Foniatr 2019; 68 (1): 41–51.

40. Valach J, Fik Z, Strnad H et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. Int J Cancer 2012; 131 (11): 2499–2508. Doi: 10.1002/ijc.27550.

41. Gal P, Vasilenko T, Kostelnikova M et al. Open wound healing in vivo: Monitoring binding and presence of adhesion/growth-regulatory galectins in rat skin during the course of complete re-epithelialization. Acta Histochem Cytochem 2011; 44 (5): 191–199. Doi: 10.1267/ahc.11 014.

42. Liu M, Tolg C, Turley E. Dissecting the dual nature of hyaluronan in the tumor microenvironment. Front Immunol 2019; 10: 947. Doi: 10.3389/fimmu.2019.00947.

43. Midwood KS, Chiquet M, Tucker RP et al. Tenascin-C at a glance. J Cell Sci 2016; 129 (23): 4321–4327. Doi: 10.1242/jcs.190546.

44. Yeo SY, Lee KW, Shin D et al. A positive feedback loop bi-stably activates fibroblasts. Nat Commun 2018; 9 (1): 3016. Doi: 10.1038/ s41467-018-05274-6.

45. Murakami T, Kikuchi H, Ishimatsu H et al. Tenascin C in colorectal cancer stroma is a predictive marker for liver metastasis and is a potent target of miR-198 as identified by microRNA analysis. Br J Cancer 2017; 117 (9): 1360–1370. Doi: 10.1038/bjc.2017.291.

46. Bass MD, Humphries MJ. Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling. Biochem J 2002; 368 (Pt 1): 1–15. Doi: 10.1042/BJ20021228.

47. Zivicova V, Gal P, Mifkova A et al. Detection of distinct changes in gene-expression profiles in specimens of tumors and transition zones of tenascin-positive/-negative head and neck squamous cell carcinoma. Anticancer Res 2018; 38 (3): 1279–1290. Doi: 10.21873/anticanres.12 350.

Labels
Audiology Paediatric ENT ENT (Otorhinolaryngology)

Article was published in

Otorhinolaryngology and Phoniatrics

Issue 1

2022 Issue 1

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#